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Abstract 

 

This paper presents a critical comparison of four 
optimisation algorithms for training a multilayer 
perceptron. The chosen algorithms are 
backpropagation, simulated annealing, genetic 
algorithms and Bayesian learning. We use a petroleum 
reservoir data set to compare the performance of these 
algorithms. The data set is randomly splitted into a 
training set and a test set. Error bounds are generated 
for all the test data. We use various statistics as 
performance indicators. The study shows that 
simulated annealing is the best algorithm for fast and 
efficient learning of the data set. 

 

1. Introduction 

 
Multilayer perceptron is a popular technique for 

deriving highly nonlinear relationships between data 
or objects. It has been successfully applied to many 
engineering domains, including petroleum reservoir 
modelling [1]. One of the crucial issues for training 
the popular feedforward neural network is the 
calculation of connection weights between neurons. 
Many iterative algorithms are now available for 
optimising such weights. This paper presents a 
comparison of various optimisation algorithms for 
training a three-layer feedforward network using a 
petroleum reservoir data set. 

Weight training in neural networks is often posed 
as an error minimisation problem. The simplest error 
function is: 
 

 

 
where E is the mean square error, n is the number of 
training patterns, zi is the (one-dimensional) target 

output,  is the transfer function (feedforward 

neural network), xi is a vector of (multivariate) inputs 
and w is the weight vector to be derived. 

The most popular algorithm for deriving the 
weight vector is backpropagation [2], which is a type 
of gradient descent methods. This algorithm 
minimises the mean square error by setting 

, where m is the number of 

weights. 
Despite the popularity of the use of 

backpropagation algorithm, its disadvantages are also 
well-known. The usual claim is its use of gradient 
descent which often could not provide optimal 
solution. It may prone to entrapment in local minima, 
and the calculation of partial derivatives can be 
difficult if the error function is multimodal and/or 
non-differentiable. The use of numerical 
approximations may further add to instability. 
Alternative and recent algorithms such as simulated 
annealing [3], genetic algorithms [4] and Bayesian 
learning [5] have been proposed. However, critical 
comparison of these algorithms in real studies is rare. 

The objective of this paper is to compare the 
performance of the above three algorithms together 
with backpropagation. The basic concepts of 
simulated annealing, genetic algorithms and Bayesian 
learning are revisited. This is followed by a detailed 
comparison of their performance on a petroleum 
reservoir data set. 

 

2. Simulated Annealing 

 
Simulated annealing (SA) has been widely used 

for tackling different combinatorial optimisation 
problems. It is based on an analogue with the physical 
process of annealing (slow cooling). The elementary 
operation is the generation of some new candidate 
configuration, which is accepted if it lowers the cost 



function, or accepted with a probability. The most 
popular update method is the Metropolis algorithm. 
The results obtained depend heavily on the cooling 
schedule used.  
 

3.  Genetic Algorithms 

 
Genetic algorithms (GA) mimic processes in 

Darwinian evolution theory. They are stochastic 
global search methods. A genetic representation for a 
potential solution to a problem is encoded as a 
chromosome (string). A “better” solution is evolved 
through the processes of reproduction, crossover and 
mutation. In general, GA could give smaller error but 
it is generally more computational intensive than 
other optimisation algorithms. 

 

4.  Bayesian Learning 

 
Bayesian learning (BL) in multilayer perceptron 

was first proposed by MacKay [5]. Unlike the 
conventional backpropagation neural networks and 
their variants, the weights are represented by a 
probability density function. Before the training 
patterns are presented to the network, the weights are 
described by a wide, prior distribution function. Once 
the network “sees” the training patterns, the weight 
distribution is updated and converted to a posterior 
one using the Bayes’ theorem. With the use of a 
Gaussian model, the learning algorithm is able to 
provide a mean (y) and a variance (σ2) for each 
prediction. The standard deviation (σ) can be 

interpreted as the error bar on the mean value, i.e. y± 
σ.  Some recent geological applications can be found 

in Cho et al. [6] and Qu et al. [7]. 
 

5.  Case Study 

 
5.1 Data Description 

 
The data set used came from a real reservoir with 

294 wells [8]. A large-scale 2D seismic survey was 
carried out and the seismic velocity and amplitude 
data were obtained at the well locations. Average 
porosity (a measure of the percentage of pore volume 
in sedimentary rock) is available at each well. In 
reservoir modelling, it is important to develop a 
transformation from the seismic measurements to 

porosity so that a 2D porosity map can be generated 
for the whole area [9]. The issue is even more 
important for 3D modelling. 

The above problem can be treated as a 
regression-type problem. A feedforward neural 
network was used to derive the transformation. We 
used the x-y coordinates of the wells, the seismic 
velocity and amplitude as inputs (4) and the output 
was porosity. All the data were normalised into the 
range (0,1). 

 

5.2 Network Setup 
 
A three-layer neural network (one hidden layer) 

was used. By trial and error, four hidden units were 
found to be appropriate for this problem. The total 
number of weights was 25 including the bias weights 
at both the hidden and output layers. Sigmoid transfer 
function was used at all processing units. The 
maximum number of epochs was set to 1,000. The 
BP, SA and GA work were performed using a C++ 
program developed by Huang [10]. The BP, SA and 
GA model parameters were set at the default values. 

In order to obtain a better understanding of the 
model performance, all the networks (except 
Bayesian) were run for 10 times using different 
random seeds (initial weights). The test patterns were 
presented to the network after each run. This provided 
10 predictions for each input data so that some 
indicators of prediction uncertainty (e.g. mean and 
variance) can be obtained. For the Bayesian analysis, 
we used Netlab [11]. Only one run was done because 
this technique is able to produce a mean and a 
variance from a parametric model.  

The whole data set was randomly splitted into two 
sets: the training set and the test set. In order to utilise 
all the available patterns, no validation set was 
generated (e.g. for early-stopping). The number of 
training and test patterns was 250 and 44 respectively. 
 

5.3 Statistical Indicators 
 
This study uses a number of statistics as 

performance indicators. The notations and meanings 
are listed below: 
 

 = Number of test data (=44) 

 = Number of predictions for each input (=10) 

 = The jth actual data, . 



= The ith neural network prediction for the jth input 

data, . 

= Minimum of  

= Maximum of  

 = Average of  

 = Standard deviation of  

 

Min = Minimum  

Q1 = First quartile of  

Q2 = Second quartile of  

Q3 = Third quartile of  

Max = Maximum  

IQR = Interquartile range = Q3 – Q1 

STD = Standard deviation of  

   

 = Error  

AE = Average error  

RMSE = Root mean square error  

R2 = R-squared, the square of the Pearson correlation 

coefficient between  and . 

 = Indicator of  

      

PI = Proportion of  

     

STD* = Average  for  

    

RMSE* = RMSE for  

 

 
Note that the two performance indicators (STD* 

and RMSE*) aim to evaluate the average spread of the 
predictions and error for the actual data falling only 
within the min-max bounds of the prediction. This 
allows closer examination of the uncertainty of 
predictions. It is easy to see that, the model is good if 
the actual data falls within the bounds. However there 
exists a counter-example. When a model gives 
extremely wide bounds (indicates low reliability and 
inconsistency), there is a large probability that the 
actual data would also fall within the bounds. To 
avoid such incorrect conclusion, we use STD* and 
RMSE* to evaluate the uncertainty the predictions. 
Thus, the model is good only if the actual data falls 
within narrow bounds (i.e. precise and consistent) and 
close to the actual value (i.e. accurate). In simple 
words, we look for models with small STD* and small 
RMSE*. 

 

5.4 Results and Discussions 
 
After running for 10 times, ten (10) predictions 

were generated for each input data. The median of the 
predictions was taken as the final prediction for 
subsequent error analyses. For BL, only one run was 
done due to its ability to generate a mean and a 
variance for each prediction. Table 1 shows the 
statistics of the median predictions compared to the 
test data. All the models seemed to give reasonable 
match to the test data statistics. This was due to the 
fact that the statistics of the training and test data sets 
were similar. 

The cross-plot of the predictions with the actual 
data is shown in Figure 1 together with the R2 values. 
Table 2 tabulates various performance indicators. The 
results from the conventional multiple linear 
regression (MLR) are also displayed. Comparing the 
five models, all the neural network models gave 
higher R2 and lower RMSE than those obtained from 
MLR. 



 

 
 

Table 1. Statistics of the predictions and the test data. 

 

 
Figure 1. Cross-plot of the predictions versus test data 

with the R2 values. 

 
 

 

 

Table 2. Performance indicators for different models. 

 
 
Figure 2 shows the histograms of the prediction 

error ( ) for the four neural network models. The 

distributions were fairly symmetrical with mean 
values (AE) slightly higher than zero. This means that 
all the models slightly underestimated the actual 
values on average, but no significant bias was present. 
Note that the AE of the BP model was about 3 times 
higher than the SA’s value. For BP, there exists a 
trade-off between speed and accuracy. For GA 
however, it took a long time to run but the 
performance was less good compared to SA. BL 
performance was similar to BP. Based on the statistics 

in Table 2, SA gave the best overall performance for 
this data set. 

Table 3 shows the uncertainty analysis results of 
the four models. From this table, we can see that 50% 
of the actual data fell between the min-max bounds 
predicted by the SA and GA models. In the BP model, 
the value was slightly smaller with only 41%. BL has 
the largest value due to the resulting wide bounds. 
According to the STD* and RMSE* values, the GA 
model gave the most precise (small STD*) and also 
the most accurate predictions (small RMSE*). The BL 
model gave the least precise predictions (very large 
STD*) with relatively large RMSE*. 

Figure 3 shows the corresponding bounds for the 
test data set. The x-axis represents the test data ID 
ranked by the actual porosity values. As shown, the 
BL bounds were relatively wide compared to the 
others. The locations of the peaks and troughs of the 
bounds were similar for all the models due to the use 
of the same training set and network topology. 

For a practical solution, it is important to select 
the algorithm with high R2, low RMSE, low AE, high 
PI, low STD*, low RMSE* as well as fast. Thus, we 
recommend the use of SA for this data set. 

 

 
Figure 2. Histograms of the prediction error. 

 
 

 

 
Table 3. Uncertainty indicators for different models. 

 
 



6. Conclusions 

 
This paper shows a critical comparison of four 

algorithms for deriving the weights of a multilayer 
perceptron applied to a petroleum data set. The 
algorithms compared are backpropagation, simulated 
annealing, genetic algorithms and Bayesian learning. 
Based on the use of various performance indicators on 
precision and accuracy, we recommend the use of 
simulated annealing for training the neural network 
using the given data set.  
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Figure 3. The min-max predictions for the test data set. 
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