
Weight Training for a Multilayer Perceptron: A Comparison Study

P.M. Wong*, Y. Niu* and T.D. Gedeon**

*School of Petroleum Engineering, University of New South Wales, Sydney, Australia
pm.wong@unsw.edu.au, z2246837@student.unsw.edu.au

**School of Information Technology, Murdoch University, Murdoch, Australia
tom@dijkstra.murdoch.edu

Abstract

This paper presents a critical comparison of four
optimisation algorithms for training a multilayer
perceptron. The chosen algorithms are
backpropagation, simulated annealing, genetic
algorithms and Bayesian learning. We use a petroleum
reservoir data set to compare the performance of these
algorithms. The data set is randomly splitted into a
training set and a test set. Error bounds are generated
for all the test data. We use various statistics as
performance indicators. The study shows that
simulated annealing is the best algorithm for fast and
efficient learning of the data set.

1. Introduction

Multilayer perceptron is a popular technique for

deriving highly nonlinear relationships between data
or objects. It has been successfully applied to many
engineering domains, including petroleum reservoir
modelling [1]. One of the crucial issues for training
the popular feedforward neural network is the
calculation of connection weights between neurons.
Many iterative algorithms are now available for
optimising such weights. This paper presents a
comparison of various optimisation algorithms for
training a three-layer feedforward network using a
petroleum reservoir data set.

Weight training in neural networks is often posed
as an error minimisation problem. The simplest error
function is:

where E is the mean square error, n is the number of
training patterns, zi is the (one-dimensional) target

output, is the transfer function (feedforward

neural network), xi is a vector of (multivariate) inputs
and w is the weight vector to be derived.

The most popular algorithm for deriving the
weight vector is backpropagation [2], which is a type
of gradient descent methods. This algorithm
minimises the mean square error by setting

, where m is the number of

weights.
Despite the popularity of the use of

backpropagation algorithm, its disadvantages are also
well-known. The usual claim is its use of gradient
descent which often could not provide optimal
solution. It may prone to entrapment in local minima,
and the calculation of partial derivatives can be
difficult if the error function is multimodal and/or
non-differentiable. The use of numerical
approximations may further add to instability.
Alternative and recent algorithms such as simulated
annealing [3], genetic algorithms [4] and Bayesian
learning [5] have been proposed. However, critical
comparison of these algorithms in real studies is rare.

The objective of this paper is to compare the
performance of the above three algorithms together
with backpropagation. The basic concepts of
simulated annealing, genetic algorithms and Bayesian
learning are revisited. This is followed by a detailed
comparison of their performance on a petroleum
reservoir data set.

2. Simulated Annealing

Simulated annealing (SA) has been widely used

for tackling different combinatorial optimisation
problems. It is based on an analogue with the physical
process of annealing (slow cooling). The elementary
operation is the generation of some new candidate
configuration, which is accepted if it lowers the cost

function, or accepted with a probability. The most
popular update method is the Metropolis algorithm.
The results obtained depend heavily on the cooling
schedule used.

3. Genetic Algorithms

Genetic algorithms (GA) mimic processes in

Darwinian evolution theory. They are stochastic
global search methods. A genetic representation for a
potential solution to a problem is encoded as a
chromosome (string). A “better” solution is evolved
through the processes of reproduction, crossover and
mutation. In general, GA could give smaller error but
it is generally more computational intensive than
other optimisation algorithms.

4. Bayesian Learning

Bayesian learning (BL) in multilayer perceptron

was first proposed by MacKay [5]. Unlike the
conventional backpropagation neural networks and
their variants, the weights are represented by a
probability density function. Before the training
patterns are presented to the network, the weights are
described by a wide, prior distribution function. Once
the network “sees” the training patterns, the weight
distribution is updated and converted to a posterior
one using the Bayes’ theorem. With the use of a
Gaussian model, the learning algorithm is able to
provide a mean (y) and a variance (σ2) for each
prediction. The standard deviation (σ) can be

interpreted as the error bar on the mean value, i.e. y±
σ. Some recent geological applications can be found

in Cho et al. [6] and Qu et al. [7].

5. Case Study

5.1 Data Description

The data set used came from a real reservoir with

294 wells [8]. A large-scale 2D seismic survey was
carried out and the seismic velocity and amplitude
data were obtained at the well locations. Average
porosity (a measure of the percentage of pore volume
in sedimentary rock) is available at each well. In
reservoir modelling, it is important to develop a
transformation from the seismic measurements to

porosity so that a 2D porosity map can be generated
for the whole area [9]. The issue is even more
important for 3D modelling.

The above problem can be treated as a
regression-type problem. A feedforward neural
network was used to derive the transformation. We
used the x-y coordinates of the wells, the seismic
velocity and amplitude as inputs (4) and the output
was porosity. All the data were normalised into the
range (0,1).

5.2 Network Setup

A three-layer neural network (one hidden layer)

was used. By trial and error, four hidden units were
found to be appropriate for this problem. The total
number of weights was 25 including the bias weights
at both the hidden and output layers. Sigmoid transfer
function was used at all processing units. The
maximum number of epochs was set to 1,000. The
BP, SA and GA work were performed using a C++
program developed by Huang [10]. The BP, SA and
GA model parameters were set at the default values.

In order to obtain a better understanding of the
model performance, all the networks (except
Bayesian) were run for 10 times using different
random seeds (initial weights). The test patterns were
presented to the network after each run. This provided
10 predictions for each input data so that some
indicators of prediction uncertainty (e.g. mean and
variance) can be obtained. For the Bayesian analysis,
we used Netlab [11]. Only one run was done because
this technique is able to produce a mean and a
variance from a parametric model.

The whole data set was randomly splitted into two
sets: the training set and the test set. In order to utilise
all the available patterns, no validation set was
generated (e.g. for early-stopping). The number of
training and test patterns was 250 and 44 respectively.

5.3 Statistical Indicators

This study uses a number of statistics as

performance indicators. The notations and meanings
are listed below:

 = Number of test data (=44)

 = Number of predictions for each input (=10)

 = The jth actual data, .

= The ith neural network prediction for the jth input

data, .

= Minimum of

= Maximum of

 = Average of

 = Standard deviation of

Min = Minimum

Q1 = First quartile of

Q2 = Second quartile of

Q3 = Third quartile of

Max = Maximum

IQR = Interquartile range = Q3 – Q1

STD = Standard deviation of

 = Error

AE = Average error

RMSE = Root mean square error

R2 = R-squared, the square of the Pearson correlation

coefficient between and .

 = Indicator of

PI = Proportion of

STD* = Average for

RMSE* = RMSE for

Note that the two performance indicators (STD*

and RMSE*) aim to evaluate the average spread of the
predictions and error for the actual data falling only
within the min-max bounds of the prediction. This
allows closer examination of the uncertainty of
predictions. It is easy to see that, the model is good if
the actual data falls within the bounds. However there
exists a counter-example. When a model gives
extremely wide bounds (indicates low reliability and
inconsistency), there is a large probability that the
actual data would also fall within the bounds. To
avoid such incorrect conclusion, we use STD* and
RMSE* to evaluate the uncertainty the predictions.
Thus, the model is good only if the actual data falls
within narrow bounds (i.e. precise and consistent) and
close to the actual value (i.e. accurate). In simple
words, we look for models with small STD* and small
RMSE*.

5.4 Results and Discussions

After running for 10 times, ten (10) predictions

were generated for each input data. The median of the
predictions was taken as the final prediction for
subsequent error analyses. For BL, only one run was
done due to its ability to generate a mean and a
variance for each prediction. Table 1 shows the
statistics of the median predictions compared to the
test data. All the models seemed to give reasonable
match to the test data statistics. This was due to the
fact that the statistics of the training and test data sets
were similar.

The cross-plot of the predictions with the actual
data is shown in Figure 1 together with the R2 values.
Table 2 tabulates various performance indicators. The
results from the conventional multiple linear
regression (MLR) are also displayed. Comparing the
five models, all the neural network models gave
higher R2 and lower RMSE than those obtained from
MLR.

Table 1. Statistics of the predictions and the test data.

Figure 1. Cross-plot of the predictions versus test data

with the R2 values.

Table 2. Performance indicators for different models.

Figure 2 shows the histograms of the prediction

error () for the four neural network models. The

distributions were fairly symmetrical with mean
values (AE) slightly higher than zero. This means that
all the models slightly underestimated the actual
values on average, but no significant bias was present.
Note that the AE of the BP model was about 3 times
higher than the SA’s value. For BP, there exists a
trade-off between speed and accuracy. For GA
however, it took a long time to run but the
performance was less good compared to SA. BL
performance was similar to BP. Based on the statistics

in Table 2, SA gave the best overall performance for
this data set.

Table 3 shows the uncertainty analysis results of
the four models. From this table, we can see that 50%
of the actual data fell between the min-max bounds
predicted by the SA and GA models. In the BP model,
the value was slightly smaller with only 41%. BL has
the largest value due to the resulting wide bounds.
According to the STD* and RMSE* values, the GA
model gave the most precise (small STD*) and also
the most accurate predictions (small RMSE*). The BL
model gave the least precise predictions (very large
STD*) with relatively large RMSE*.

Figure 3 shows the corresponding bounds for the
test data set. The x-axis represents the test data ID
ranked by the actual porosity values. As shown, the
BL bounds were relatively wide compared to the
others. The locations of the peaks and troughs of the
bounds were similar for all the models due to the use
of the same training set and network topology.

For a practical solution, it is important to select
the algorithm with high R2, low RMSE, low AE, high
PI, low STD*, low RMSE* as well as fast. Thus, we
recommend the use of SA for this data set.

Figure 2. Histograms of the prediction error.

Table 3. Uncertainty indicators for different models.

6. Conclusions

This paper shows a critical comparison of four

algorithms for deriving the weights of a multilayer
perceptron applied to a petroleum data set. The
algorithms compared are backpropagation, simulated
annealing, genetic algorithms and Bayesian learning.
Based on the use of various performance indicators on
precision and accuracy, we recommend the use of
simulated annealing for training the neural network
using the given data set.

Acknowledgments

Dr PM Wong would like to thank Institut Français

du Pétrole at Rueil Malmaison (France) where he was
appointed as Visiting Professor from February to
August 2000 when the major technical work of this
paper was done. This work is supported by an
Australian Research Council’s Small Grant awarded
in 2000.

Figure 3. The min-max predictions for the test data set.

References

[1] D. Tamhane, P.M. Wong, F. Aminzadeh and M.

Nikravesh, “Soft Computing for Intelligent
Reservoir Characterization,” SPE 59397, SPE
Asia Pacific Conference on Integrated Modelling
for Asset Management, Yokohama, 11 pp., 2000.

[2] C.M. Bishop, Neural Network for Pattern
Recognition, Oxford University Press, NY, 1995.

[3] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi,
“Optimization by Simulated Annealing,”
Science, 220(4598), 671-680, 1983.

[4] D.E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning,
Addison-Wesley, MA, 1989.

[5] D. MacKay, “A Practical Bayesian Framework

for Backpropagation Networks,” Neural
Computation, 4(3), 448-472, 1992.

[6] S. Cho, S. Choi and P.M. Wong, “Data Selection
based on Bayesian Error Bar,” International
Conference on Neural Information Processing,
Perth, vol. 1, 418-422, 1999.

[7] D. Qu, A.G. Bruce, P.M. Wong, “Bayesian
Neural Networks: A New Tool for Permeability
Prediction,” International Conference on
Advances in Intelligent Systems: Theory and
Applications, Canberra, 6 pp., 2000.

[8] P.M. Wong and S.A.R. Shibli, “Combining
Multiple Seismic Attributes with Linguistic
Reservoir Qualities for Scenario-Based
Reservoir Modelling,” SPE 64421, SPE Asia
Pacific Oil and Gas Conference and Exhibition,
Brisbane, 5 pp., 2000.

[9] Y. Niu, P.M. Wong and L. Chen, “Sequential
Neural Simulation: A New Approach for
Stochastic Reservoir Modelling,” SPE 65123,
SPE European Petroleum Conference, Paris, 6
pp., 2000.

[10] Y. Huang, Soft Computing Models and
Optimisation Algorithms for the Prediction of
Petroleum Reservoir Properties, PhD
dissertation, University of New South Wales,
Sydney, unpublished (1999).

[11] Neural Computing Research Group, Aston
University,
http://www.ncrg.aston.ac.uk/netlab/index.html.

